3.2.96 \(\int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx\) [196]

3.2.96.1 Optimal result
3.2.96.2 Mathematica [C] (verified)
3.2.96.3 Rubi [A] (verified)
3.2.96.4 Maple [A] (verified)
3.2.96.5 Fricas [B] (verification not implemented)
3.2.96.6 Sympy [F(-1)]
3.2.96.7 Maxima [F]
3.2.96.8 Giac [F]
3.2.96.9 Mupad [B] (verification not implemented)

3.2.96.1 Optimal result

Integrand size = 24, antiderivative size = 148 \[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {a \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {\sqrt {a}-\sqrt {b}} b^{7/4} d}+\frac {a \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 \sqrt {\sqrt {a}+\sqrt {b}} b^{7/4} d}+\frac {\cos (c+d x)}{b d}-\frac {\cos ^3(c+d x)}{3 b d} \]

output
cos(d*x+c)/b/d-1/3*cos(d*x+c)^3/b/d-1/2*a*arctan(b^(1/4)*cos(d*x+c)/(a^(1/ 
2)-b^(1/2))^(1/2))/b^(7/4)/d/(a^(1/2)-b^(1/2))^(1/2)+1/2*a*arctanh(b^(1/4) 
*cos(d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/b^(7/4)/d/(a^(1/2)+b^(1/2))^(1/2)
 
3.2.96.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 1.30 (sec) , antiderivative size = 310, normalized size of antiderivative = 2.09 \[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {18 \cos (c+d x)-2 \cos (3 (c+d x))-3 i a \text {RootSum}\left [b-4 b \text {$\#$1}^2-16 a \text {$\#$1}^4+6 b \text {$\#$1}^4-4 b \text {$\#$1}^6+b \text {$\#$1}^8\&,\frac {-2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right )+6 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^2-3 i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^2-6 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^4+3 i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^4+2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^6-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^6}{-b \text {$\#$1}-8 a \text {$\#$1}^3+3 b \text {$\#$1}^3-3 b \text {$\#$1}^5+b \text {$\#$1}^7}\&\right ]}{24 b d} \]

input
Integrate[Sin[c + d*x]^7/(a - b*Sin[c + d*x]^4),x]
 
output
(18*Cos[c + d*x] - 2*Cos[3*(c + d*x)] - (3*I)*a*RootSum[b - 4*b*#1^2 - 16* 
a*#1^4 + 6*b*#1^4 - 4*b*#1^6 + b*#1^8 & , (-2*ArcTan[Sin[c + d*x]/(Cos[c + 
 d*x] - #1)] + I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] + 6*ArcTan[Sin[c + d*x] 
/(Cos[c + d*x] - #1)]*#1^2 - (3*I)*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 
- 6*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 + (3*I)*Log[1 - 2*Cos[c 
+ d*x]*#1 + #1^2]*#1^4 + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^6 - 
 I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^6)/(-(b*#1) - 8*a*#1^3 + 3*b*#1^3 
- 3*b*#1^5 + b*#1^7) & ])/(24*b*d)
 
3.2.96.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3042, 3694, 1484, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^7}{a-b \sin (c+d x)^4}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {\left (1-\cos ^2(c+d x)\right )^3}{-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b}d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 1484

\(\displaystyle -\frac {\int \left (\frac {\cos ^2(c+d x)}{b}-\frac {1}{b}+\frac {a-a \cos ^2(c+d x)}{b \left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )}\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {a \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 b^{7/4} \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {a \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 b^{7/4} \sqrt {\sqrt {a}+\sqrt {b}}}+\frac {\cos ^3(c+d x)}{3 b}-\frac {\cos (c+d x)}{b}}{d}\)

input
Int[Sin[c + d*x]^7/(a - b*Sin[c + d*x]^4),x]
 
output
-(((a*ArcTan[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] - Sqrt[b]]])/(2*Sqrt[Sqrt 
[a] - Sqrt[b]]*b^(7/4)) - (a*ArcTanh[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] + 
 Sqrt[b]]])/(2*Sqrt[Sqrt[a] + Sqrt[b]]*b^(7/4)) - Cos[c + d*x]/b + Cos[c + 
 d*x]^3/(3*b))/d)
 

3.2.96.3.1 Defintions of rubi rules used

rule 1484
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symb 
ol] :> Int[ExpandIntegrand[(d + e*x^2)^q/(a + b*x^2 + c*x^4), x], x] /; Fre 
eQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 
 0] && IntegerQ[q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
3.2.96.4 Maple [A] (verified)

Time = 1.72 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.74

method result size
derivativedivides \(\frac {-\frac {\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}-\cos \left (d x +c \right )}{b}-a \left (\frac {\arctan \left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\operatorname {arctanh}\left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{d}\) \(110\)
default \(\frac {-\frac {\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}-\cos \left (d x +c \right )}{b}-a \left (\frac {\arctan \left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\operatorname {arctanh}\left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 b \sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{d}\) \(110\)
risch \(\frac {3 \,{\mathrm e}^{i \left (d x +c \right )}}{8 b d}+\frac {3 \,{\mathrm e}^{-i \left (d x +c \right )}}{8 b d}+\frac {i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (a \,b^{7} d^{4}-b^{8} d^{4}\right ) \textit {\_Z}^{4}-2048 a^{2} b^{4} d^{2} \textit {\_Z}^{2}-1048576 a^{4}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\left (\left (-\frac {i b^{5} d^{3}}{16384 a^{2}}+\frac {i b^{6} d^{3}}{16384 a^{3}}\right ) \textit {\_R}^{3}+\frac {i d \,b^{2} \textit {\_R}}{8 a}\right ) {\mathrm e}^{i \left (d x +c \right )}+1\right )\right )}{128}-\frac {\cos \left (3 d x +3 c \right )}{12 b d}\) \(166\)

input
int(sin(d*x+c)^7/(a-b*sin(d*x+c)^4),x,method=_RETURNVERBOSE)
 
output
1/d*(-1/b*(1/3*cos(d*x+c)^3-cos(d*x+c))-a*(1/2/b/(((a*b)^(1/2)-b)*b)^(1/2) 
*arctan(cos(d*x+c)*b/(((a*b)^(1/2)-b)*b)^(1/2))-1/2/b/(((a*b)^(1/2)+b)*b)^ 
(1/2)*arctanh(cos(d*x+c)*b/(((a*b)^(1/2)+b)*b)^(1/2))))
 
3.2.96.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 849 vs. \(2 (110) = 220\).

Time = 0.34 (sec) , antiderivative size = 849, normalized size of antiderivative = 5.74 \[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {3 \, b d \sqrt {-\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} + a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}} \log \left (a^{3} \cos \left (d x + c\right ) + {\left (a^{2} b^{2} d - {\left (a b^{5} - b^{6}\right )} d^{3} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}}\right )} \sqrt {-\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} + a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}}\right ) - 3 \, b d \sqrt {\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} - a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}} \log \left (a^{3} \cos \left (d x + c\right ) - {\left (a^{2} b^{2} d + {\left (a b^{5} - b^{6}\right )} d^{3} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}}\right )} \sqrt {\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} - a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}}\right ) - 3 \, b d \sqrt {-\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} + a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}} \log \left (-a^{3} \cos \left (d x + c\right ) + {\left (a^{2} b^{2} d - {\left (a b^{5} - b^{6}\right )} d^{3} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}}\right )} \sqrt {-\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} + a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}}\right ) + 3 \, b d \sqrt {\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} - a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}} \log \left (-a^{3} \cos \left (d x + c\right ) - {\left (a^{2} b^{2} d + {\left (a b^{5} - b^{6}\right )} d^{3} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}}\right )} \sqrt {\frac {{\left (a b^{3} - b^{4}\right )} d^{2} \sqrt {\frac {a^{5}}{{\left (a^{2} b^{7} - 2 \, a b^{8} + b^{9}\right )} d^{4}}} - a^{2}}{{\left (a b^{3} - b^{4}\right )} d^{2}}}\right ) - 4 \, \cos \left (d x + c\right )^{3} + 12 \, \cos \left (d x + c\right )}{12 \, b d} \]

input
integrate(sin(d*x+c)^7/(a-b*sin(d*x+c)^4),x, algorithm="fricas")
 
output
1/12*(3*b*d*sqrt(-((a*b^3 - b^4)*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d 
^4)) + a^2)/((a*b^3 - b^4)*d^2))*log(a^3*cos(d*x + c) + (a^2*b^2*d - (a*b^ 
5 - b^6)*d^3*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)))*sqrt(-((a*b^3 - b^ 
4)*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)) + a^2)/((a*b^3 - b^4)*d^2 
))) - 3*b*d*sqrt(((a*b^3 - b^4)*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^ 
4)) - a^2)/((a*b^3 - b^4)*d^2))*log(a^3*cos(d*x + c) - (a^2*b^2*d + (a*b^5 
 - b^6)*d^3*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)))*sqrt(((a*b^3 - b^4) 
*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)) - a^2)/((a*b^3 - b^4)*d^2)) 
) - 3*b*d*sqrt(-((a*b^3 - b^4)*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4 
)) + a^2)/((a*b^3 - b^4)*d^2))*log(-a^3*cos(d*x + c) + (a^2*b^2*d - (a*b^5 
 - b^6)*d^3*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)))*sqrt(-((a*b^3 - b^4 
)*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)) + a^2)/((a*b^3 - b^4)*d^2) 
)) + 3*b*d*sqrt(((a*b^3 - b^4)*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4 
)) - a^2)/((a*b^3 - b^4)*d^2))*log(-a^3*cos(d*x + c) - (a^2*b^2*d + (a*b^5 
 - b^6)*d^3*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)))*sqrt(((a*b^3 - b^4) 
*d^2*sqrt(a^5/((a^2*b^7 - 2*a*b^8 + b^9)*d^4)) - a^2)/((a*b^3 - b^4)*d^2)) 
) - 4*cos(d*x + c)^3 + 12*cos(d*x + c))/(b*d)
 
3.2.96.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\text {Timed out} \]

input
integrate(sin(d*x+c)**7/(a-b*sin(d*x+c)**4),x)
 
output
Timed out
 
3.2.96.7 Maxima [F]

\[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\sin \left (d x + c\right )^{7}}{b \sin \left (d x + c\right )^{4} - a} \,d x } \]

input
integrate(sin(d*x+c)^7/(a-b*sin(d*x+c)^4),x, algorithm="maxima")
 
output
-1/12*(12*b*d*integrate(-2*(12*a*b*cos(3*d*x + 3*c)*sin(2*d*x + 2*c) - 4*a 
*b*cos(d*x + c)*sin(2*d*x + 2*c) + 4*a*b*cos(2*d*x + 2*c)*sin(d*x + c) - a 
*b*sin(d*x + c) + (a*b*sin(7*d*x + 7*c) - 3*a*b*sin(5*d*x + 5*c) + 3*a*b*s 
in(3*d*x + 3*c) - a*b*sin(d*x + c))*cos(8*d*x + 8*c) + 2*(2*a*b*sin(6*d*x 
+ 6*c) + 2*a*b*sin(2*d*x + 2*c) + (8*a^2 - 3*a*b)*sin(4*d*x + 4*c))*cos(7* 
d*x + 7*c) + 4*(3*a*b*sin(5*d*x + 5*c) - 3*a*b*sin(3*d*x + 3*c) + a*b*sin( 
d*x + c))*cos(6*d*x + 6*c) - 6*(2*a*b*sin(2*d*x + 2*c) + (8*a^2 - 3*a*b)*s 
in(4*d*x + 4*c))*cos(5*d*x + 5*c) - 2*(3*(8*a^2 - 3*a*b)*sin(3*d*x + 3*c) 
- (8*a^2 - 3*a*b)*sin(d*x + c))*cos(4*d*x + 4*c) - (a*b*cos(7*d*x + 7*c) - 
 3*a*b*cos(5*d*x + 5*c) + 3*a*b*cos(3*d*x + 3*c) - a*b*cos(d*x + c))*sin(8 
*d*x + 8*c) - (4*a*b*cos(6*d*x + 6*c) + 4*a*b*cos(2*d*x + 2*c) - a*b + 2*( 
8*a^2 - 3*a*b)*cos(4*d*x + 4*c))*sin(7*d*x + 7*c) - 4*(3*a*b*cos(5*d*x + 5 
*c) - 3*a*b*cos(3*d*x + 3*c) + a*b*cos(d*x + c))*sin(6*d*x + 6*c) + 3*(4*a 
*b*cos(2*d*x + 2*c) - a*b + 2*(8*a^2 - 3*a*b)*cos(4*d*x + 4*c))*sin(5*d*x 
+ 5*c) + 2*(3*(8*a^2 - 3*a*b)*cos(3*d*x + 3*c) - (8*a^2 - 3*a*b)*cos(d*x + 
 c))*sin(4*d*x + 4*c) - 3*(4*a*b*cos(2*d*x + 2*c) - a*b)*sin(3*d*x + 3*c)) 
/(b^3*cos(8*d*x + 8*c)^2 + 16*b^3*cos(6*d*x + 6*c)^2 + 16*b^3*cos(2*d*x + 
2*c)^2 + b^3*sin(8*d*x + 8*c)^2 + 16*b^3*sin(6*d*x + 6*c)^2 + 16*b^3*sin(2 
*d*x + 2*c)^2 - 8*b^3*cos(2*d*x + 2*c) + b^3 + 4*(64*a^2*b - 48*a*b^2 + 9* 
b^3)*cos(4*d*x + 4*c)^2 + 4*(64*a^2*b - 48*a*b^2 + 9*b^3)*sin(4*d*x + 4...
 
3.2.96.8 Giac [F]

\[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\sin \left (d x + c\right )^{7}}{b \sin \left (d x + c\right )^{4} - a} \,d x } \]

input
integrate(sin(d*x+c)^7/(a-b*sin(d*x+c)^4),x, algorithm="giac")
 
output
sage0*x
 
3.2.96.9 Mupad [B] (verification not implemented)

Time = 13.80 (sec) , antiderivative size = 1119, normalized size of antiderivative = 7.56 \[ \int \frac {\sin ^7(c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )}{b\,d}-\frac {{\cos \left (c+d\,x\right )}^3}{3\,b\,d}+\frac {\mathrm {atan}\left (-\frac {a^3\,\cos \left (c+d\,x\right )\,\sqrt {-\frac {\sqrt {a^5\,b^7}}{16\,\left (a\,b^7-b^8\right )}-\frac {a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,8{}\mathrm {i}}{\frac {2\,a^4}{b^2}+\frac {2\,a^4\,b^6}{a\,b^7-b^8}+\frac {2\,a^2\,b^2\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}}+\frac {a^3\,b^8\,\cos \left (c+d\,x\right )\,\sqrt {-\frac {\sqrt {a^5\,b^7}}{16\,\left (a\,b^7-b^8\right )}-\frac {a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,8{}\mathrm {i}}{2\,a^4\,b^6-2\,a^5\,b^5+\frac {2\,a^4\,b^{14}}{a\,b^7-b^8}-\frac {2\,a^5\,b^{13}}{a\,b^7-b^8}+\frac {2\,a^2\,b^{10}\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}-\frac {2\,a^3\,b^9\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}}+\frac {a\,b^4\,\cos \left (c+d\,x\right )\,\sqrt {-\frac {\sqrt {a^5\,b^7}}{16\,\left (a\,b^7-b^8\right )}-\frac {a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,\sqrt {a^5\,b^7}\,8{}\mathrm {i}}{2\,a^4\,b^6-2\,a^5\,b^5+\frac {2\,a^4\,b^{14}}{a\,b^7-b^8}-\frac {2\,a^5\,b^{13}}{a\,b^7-b^8}+\frac {2\,a^2\,b^{10}\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}-\frac {2\,a^3\,b^9\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}}\right )\,\sqrt {-\frac {\sqrt {a^5\,b^7}+a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,2{}\mathrm {i}}{d}-\frac {\mathrm {atan}\left (\frac {a^3\,\cos \left (c+d\,x\right )\,\sqrt {\frac {\sqrt {a^5\,b^7}}{16\,\left (a\,b^7-b^8\right )}-\frac {a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,8{}\mathrm {i}}{\frac {2\,a^4}{b^2}+\frac {2\,a^4\,b^6}{a\,b^7-b^8}-\frac {2\,a^2\,b^2\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}}-\frac {a^3\,b^8\,\cos \left (c+d\,x\right )\,\sqrt {\frac {\sqrt {a^5\,b^7}}{16\,\left (a\,b^7-b^8\right )}-\frac {a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,8{}\mathrm {i}}{2\,a^4\,b^6-2\,a^5\,b^5+\frac {2\,a^4\,b^{14}}{a\,b^7-b^8}-\frac {2\,a^5\,b^{13}}{a\,b^7-b^8}-\frac {2\,a^2\,b^{10}\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}+\frac {2\,a^3\,b^9\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}}+\frac {a\,b^4\,\cos \left (c+d\,x\right )\,\sqrt {\frac {\sqrt {a^5\,b^7}}{16\,\left (a\,b^7-b^8\right )}-\frac {a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,\sqrt {a^5\,b^7}\,8{}\mathrm {i}}{2\,a^4\,b^6-2\,a^5\,b^5+\frac {2\,a^4\,b^{14}}{a\,b^7-b^8}-\frac {2\,a^5\,b^{13}}{a\,b^7-b^8}-\frac {2\,a^2\,b^{10}\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}+\frac {2\,a^3\,b^9\,\sqrt {a^5\,b^7}}{a\,b^7-b^8}}\right )\,\sqrt {\frac {\sqrt {a^5\,b^7}-a^2\,b^4}{16\,\left (a\,b^7-b^8\right )}}\,2{}\mathrm {i}}{d} \]

input
int(sin(c + d*x)^7/(a - b*sin(c + d*x)^4),x)
 
output
cos(c + d*x)/(b*d) - cos(c + d*x)^3/(3*b*d) + (atan((a^3*b^8*cos(c + d*x)* 
(- (a^5*b^7)^(1/2)/(16*(a*b^7 - b^8)) - (a^2*b^4)/(16*(a*b^7 - b^8)))^(1/2 
)*8i)/(2*a^4*b^6 - 2*a^5*b^5 + (2*a^4*b^14)/(a*b^7 - b^8) - (2*a^5*b^13)/( 
a*b^7 - b^8) + (2*a^2*b^10*(a^5*b^7)^(1/2))/(a*b^7 - b^8) - (2*a^3*b^9*(a^ 
5*b^7)^(1/2))/(a*b^7 - b^8)) - (a^3*cos(c + d*x)*(- (a^5*b^7)^(1/2)/(16*(a 
*b^7 - b^8)) - (a^2*b^4)/(16*(a*b^7 - b^8)))^(1/2)*8i)/((2*a^4)/b^2 + (2*a 
^4*b^6)/(a*b^7 - b^8) + (2*a^2*b^2*(a^5*b^7)^(1/2))/(a*b^7 - b^8)) + (a*b^ 
4*cos(c + d*x)*(- (a^5*b^7)^(1/2)/(16*(a*b^7 - b^8)) - (a^2*b^4)/(16*(a*b^ 
7 - b^8)))^(1/2)*(a^5*b^7)^(1/2)*8i)/(2*a^4*b^6 - 2*a^5*b^5 + (2*a^4*b^14) 
/(a*b^7 - b^8) - (2*a^5*b^13)/(a*b^7 - b^8) + (2*a^2*b^10*(a^5*b^7)^(1/2)) 
/(a*b^7 - b^8) - (2*a^3*b^9*(a^5*b^7)^(1/2))/(a*b^7 - b^8)))*(-((a^5*b^7)^ 
(1/2) + a^2*b^4)/(16*(a*b^7 - b^8)))^(1/2)*2i)/d - (atan((a^3*cos(c + d*x) 
*((a^5*b^7)^(1/2)/(16*(a*b^7 - b^8)) - (a^2*b^4)/(16*(a*b^7 - b^8)))^(1/2) 
*8i)/((2*a^4)/b^2 + (2*a^4*b^6)/(a*b^7 - b^8) - (2*a^2*b^2*(a^5*b^7)^(1/2) 
)/(a*b^7 - b^8)) - (a^3*b^8*cos(c + d*x)*((a^5*b^7)^(1/2)/(16*(a*b^7 - b^8 
)) - (a^2*b^4)/(16*(a*b^7 - b^8)))^(1/2)*8i)/(2*a^4*b^6 - 2*a^5*b^5 + (2*a 
^4*b^14)/(a*b^7 - b^8) - (2*a^5*b^13)/(a*b^7 - b^8) - (2*a^2*b^10*(a^5*b^7 
)^(1/2))/(a*b^7 - b^8) + (2*a^3*b^9*(a^5*b^7)^(1/2))/(a*b^7 - b^8)) + (a*b 
^4*cos(c + d*x)*((a^5*b^7)^(1/2)/(16*(a*b^7 - b^8)) - (a^2*b^4)/(16*(a*b^7 
 - b^8)))^(1/2)*(a^5*b^7)^(1/2)*8i)/(2*a^4*b^6 - 2*a^5*b^5 + (2*a^4*b^1...